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What Gödel’s Incompleteness Result Does and Does Not Show 
 

Haim Gaifman 
 
 
 
In a recent paper S. McCall adds another link to a chain of attempts to enlist Gödel’s 
incompleteness result as an argument for the thesis that human reasoning cannot be 
construed as being carried out by a computer.1 McCall’s paper is undermined by a 
technical oversight. My concern however is not with the technical point.  The argument 
from Gödel’s result to the no-computer thesis can be made without following McCall’s 
route; it is then straighter and more forceful. Yet the argument fails in an interesting and 
revealing way. And it leaves a remainder: if some computer does in fact simulate all our 
mathematical reasoning, then, in principle, we cannot fully grasp how it works. Gödel’s 
result also points out a certain essential limitation of self-reflection. The resulting picture 
parallels, not accidentally, Davidson’s view of psychology, as a science that in principle 
must remain “imprecise”, not fully spelt out.  What is intended here by “fully grasp”, and 
how all this is related to self-reflection, will become clear at the end of this comment.  
 
I should add that the full implications and the significance of Gödel’s result are often 
misunderstood in other important respects. The result is rightfully conceived as revealing 
an essential limitation of formal deductive systems: In any deductive system that satisfies 
the non-negotiable requirement of effectiveness (the existence of an effective procedure 
for deciding whether any purported proof is a proof), and some minimal adequacy 
conditions (the capacity to represent certain elementary arithmetic, or combinatorial 
notions), there are sentences that are neither provable nor refutable in the system. What 
this formulation hides, and what the proofs current in most textbooks miss, is the 
constructive nature of its original proof, which does not appeal to the truth concept. It is 
by virtue of this feature that the result has undermined Hilbert’s finitistic program in the 
foundation of mathematics. Though Gödel’s theorem is an independence result, it is not a 
radical one, like the independence of the continuum hypothesis; rather the opposite: we 
know, by good reasons as any, the truth-value of the independent sentence. And it is this 
“weak” character that endows Gödel’s result with its foundational significance and with 
its force against Hilbert’s program. Finally, while the theorem has profound effects in the 
foundations of mathematics and on our view of formal systems, it has had very little 
effect on mathematical practice. These and other related points are beyond the scope of 
the present comment; I hope to address them elsewhere.  
 
Let me first refine, for clarification, what I called above “no-computer thesis”. The claim 
is that no computer program that produces, or searches for, proofs can achieve what is 
achievable by mathematicians who engage in proving theorems by mathematical 

                                                 
1 S. McCall, “Can a Turing Machine Know that the Gödel Sentence Is True?” The Journal of Philosophy 
xcvi (1999). The two previous most noted attempts have been Lucas: “Minds, Machines and Gödel”, 
Philosophy xxxvi  (1961), and Penrose in: The Emperor’s New Mind (Oxford, 1989) and Shadows of the 
Mind (Oxford, 1994). 
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reasoning. This thesis is of great interest in itself and I shall not be concerned here with 
the broader implications it might have in the philosophy of mind.  The argument for the 
thesis consists in two moves: (I) A theorem-prover (i.e., a computer program that proves 
theorems) can be seen as finding theorems in some formal deductive system. (II) For any 
formal deductive system there is a sentence (e.g., the so-called Gödel sentence that says 
of itself that it is unprovable in the system) that cannot be proved in the system but whose 
truth can be inferred by mathematical reasoning.  (I) is not problematic. A theorem-
prover generates a recursively enumerable set of sentences (the general reader may ignore 
this technical details without missing much), and the closure of this set under logical 
implications can be seen as the set of theorems of some formal deductive system (we can 
actually assume that the theorem-prover generates the closure of this set). My concern 
here will be with (II).  At this point a minimal sketch of Gödel’s proof may not be 
redundant, given that some elementary misunderstandings can still be found in the 
philosophical literature. 2 
 
Usually, Gödel’s result is stated for number-theoretic systems, and its proof uses an 
encoding of sentences, sentence parts, and proofs by natural numbers: the so-called Gödel 
numbers.  This makes it possible to express within a formal theory of numbers the basic 
syntactic, and proof-theoretic, notions of the system itself.  But the result can be stated 
and proved with respect to any system that can handle its own syntax, e.g., some theory 
of finite strings. Let T  (referred to also as ‘theory’) be a system based on a first-order 
language, whose intended interpretation is over the universe of natural numbers. (The 
universe may also include other objects, provided that the subclass of natural numbers 
can be defined by a suitable formula in the language.) The language has the usual 
vocabulary: names for addition and multiplication, a name, 0, for the number 0 and a 
name s( ) for the successor function. Standard names for other numbers are obtained, in 
the usual way, by iterating  s( ); e.g., the name, 4 , for the number 4 is  s(s(s(s(0)))). The 
axioms should be sufficient for deriving certain basic properties, which enable one to 
represent various syntactic notions inside the system, where formulas and proofs are 
“identified with” their Gödel numbers. This, it turns out, is a rather weak requirement, 
which is satisfied by systems considerably weaker than Peano’s arithmetic.3  Under these 
conditions, there is a formula: ProofT(y,x), which says that y is a proof, in T, of  x, such 
that the following holds, where  ‘T t …’ means that, in T, …  is provable,  n is the 
standard name of  n,  and proofs and sentences are identified with their Gödel numbers. 
 
(1)                         If n is a proof, in T, of m,   then    T t   ProofT(n,m),                          

                                                 
2 Dennett, for example, in chapter 13 of Brainstorms , MIT 1986 (I thank Ihsan Dogramaci for calling my 
attention to this chapter),  speaks of  Gödel sentences of Turing machines, including (on page 265) the 
Gödel sentence of the universal Turing machine. This makes no sense. A Gödel sentence is defined with 
respect to a deductive system, or with respect to a theorem-prover, which a Turing machine is in general 
not. “The Gödel sentence of the universal Turing machine” is either meaningless, or�if by stretch of 
imagination the “universal Turing machine” is supposed to cover all deductive systems�a false, or even 
contradictory sentence.  
3 For example, it is sufficient that the following be provable: all true inequalities  m ≠ n, all true equalities 
 m + n = k, and similarly for  multiplication; also, for each n, the formulas: x< n  ↔  x=0 ∨ x=1  ∨…∨ x=n-1  
and  x<n  ∨  x = n  ∨  n < x  (where the ordering, <, is expressed either through some formula, or is named by 
a relation symbol of the vocabulary).  
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(2)                         If n is not proof, in T, of m, then   T t   ¬ProofT(n,m).   
 
At the heart of Gödel’s proof is the fixed-point theorem, also known as the diagonal 
theorem, which says that, for any given formula, φ(x), with one free variable, there is a 
sentence α such that the following biconditional is provable in T: 

α ↔ φ(‘α’) 
where ‘α’ is the standard name of α’s Gödel number.  (Moreover, the proof of the 
theorem yields an actual construction of α, as well as of the proof of the biconditional). 
We can think of α as a sentence that, referring to itself via its Gödel number, says of 
itself that it has the property φ( ).  Letting φ(x) be the formula ¬∃yProofT(y,x), we get a 
sentence γ that says of itself that it is not provable (in T): 
(3)                                                 T t  γ ↔ ¬∃yProofT(y,‘γ’). 

Now, if n is any proof (in T) of γ, then, combining it with the proof of the biconditional, 
we get a proof of ¬∃yProofT(y,x); on the other hand (1) gives us a proof of ProofT(n,‘γ’). 
Since these two sentences contradict each other (in first-order logic) we get a proof of a 
contradiction. Therefore, if T is consistent, γ is not provable in it. But the unprovability of 
γ is formally stated as ¬∃yProofT(y,‘γ’); hence, we have just inferred ¬∃yProofT(y,‘γ’) 
from the assumption that T is consistent. Combining this with the biconditional in (3), we 
infer γ.  Now the claim that T is consistent can be formalized in T, say as the sentence 
that says that there is no proof of  ¬(0 = 0) :   ¬∃yProofT(y, ‘0 ≠ 0’).  Call this sentence 
Con(T). Then the argument we have just given amounts to a derivation (outside T) of: 

(4)                                     Con(T)  →  ¬∃yProofT(y,‘γ’) 

If T is minimally adequate, this derivation can be formalized in it, making (4) a theorem 
of T. (“Minimally adequate” is still rather weak, considerably less than Peano’s 
arithmetic.)  Assuming from now on that T is minimally adequate, it follows that, if T is 
consistent,  Con(T) is not provable in it; otherwise we would get from (4) a proof of  
¬∃yProofT(y,‘γ’), hence a proof of γ. This is the content of Gödel’s second 
incompleteness theorem.  

The reason we accept the Gödel sentence, γ, as true is that it is implied by the consistency 
of T. Rather than γ, let us therefore focus on Con(T) as the unprovable sentence.  (Indeed, 
γ is provably equivalent to Con(T): we have just indicated how to get γ from Con(T) and, 
in the other direction, Con(T) follows from the unprovability of any sentence, in 
particular from ¬∃yProofT(y,‘γ’).) The basis of all philosophical takes offs from Gödel’s 
result is thus the following simple fact: For any minimally adequate formal deductive 
system, T, if T is consistent then its being consistent is expressible in T but unprovable in 
it.   

 
Before proceeding, a short remark on McCall’s oversight. Gödel’s theorem has also a 
second part, proved by similar arguments, which says that if T is ω-consistent, then ¬γ is 
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not provable in it; ω-consistency is the following condition that is stronger than 
consistency: whenever ∃xα(x) is provable (where ‘x’ ranges over the natural numbers), it 
is not the case that ¬α(n) is provable for all n.   McCall observes that it is unknown 
whether ω-consistency  can be replaced in the second part by consistency. In fact, it is not 
difficult to show that it cannot, unless T is not ω-consistent. But all this is neither here 
nor there, for the use of ω-consistency does not make for a new, or improved argument.  
We can express in the language of T the statement that T is ω-consistent and get an 
analogous conditional to (4):  ω-Con(T)  →  ¬∃yProofT(y,‘¬γ’).  This, again, is provable 
in T, under mild adequacy assumptions. The situation is similar to that of the first part.  If 
T is ω-consistent, this fact cannot be proved in it.  Since consistency is a weaker and 
more natural property than ω-consistency, the argument for the no-computer thesis is 
better if it is based on the unprovability of Con(T).  Let me now turn to this argument. 
 
        
 Any deductive system, T, that formalizes mathematical reasoning must leave something 
outside:  Its own consistency, expressed as Con(T), cannot be derived in it. As we 
remarked above, in principle, a computer that proves theorems generates proofs in some 
formal system. (This is true of the standard notion of computers. It may fail of computers 
that incorporate physical elements that, by virtue of physical theory, compute non-
recursive functions. We shall not pursue this possibility here.) If the computer can 
“know” only what it can prove, then it cannot know that it is consistent (i.e., never 
produces a contradiction), something that we qua mathematicians seem to know. We may 
know it, for example, on the basis of a soundness argument, by appealing to the concept 
of truth: All the axioms of T are true, in the intended interpretation of the language in 
question, and all the inference rules preserve truth; therefore whatever we prove from the 
axioms by applying inference rules, must be true, a fortiori, non-contradictory.  
 
 
There is now a philosophical temptation to argue that our access to the concept of truth 
gives us an edge over any computer. The thought appears attractive, given the traditional 
distinction between syntax and semantics and the view that sees the computer as carrying 
out mere syntactic manipulations. But this line fails. In the same sense that computers can 
prove, they can handle semantic notions. The argument from soundness can be 
formalized in a richer system, in which we can define a truth predicate for the language 
of T; the clauses of the truth definition are deducible as theorems in the second system, 
and so is the general statement that every sentence provable in T is true, hence non-
contradictory. A computer that proves theorems in the richer system  “knows” that T is 
consistent.  

 
The appeal to the truth concept is therefore misplaced. Still, the argument seems to carry 
through. As a rule, mathematicians take the consistency of the framework within which 
they work for granted. (This is different from physics where faute de mieux 
contradictions are tolerated as temporary anomalies, to be resolved later.) If T is obtained 
by formalizing a framework of mathematical reasoning, those who accept the framework 
accept, at least implicitly, that T is consistent, i.e., they accept Con(T). This acceptance is 
not merely some state ascribed to the mathematician for philosophical convenience. Had 



 5

it been so, one might have stipulated “by definition” that the theorem-prover that works 
in T “knows” that T is consistent.  In principle, it can be manifested by using Con(T) in 
mathematical practice; a mathematician will reject as false any hypothesis he is trying to 
establish, if he finds that the hypothesis implies the inconsistency of the system  within 
which he is working.  Which is what a theorem-prover is incapable of.  Observe, 
moreover, that the mathematician’s ability derives from a certain capacity for self-
reflection. Reflecting on one’s mathematical reasoning and realizing that it can be 
formalized as T, one takes Con(T) as something that can be legitimately used in 
mathematical reasoning.  
 
We can extend T by adding Con(T) as an additional axiom. But then the consistency of 
that system is beyond its reach, and so on. We thus have a systematic way of extending 
any acceptable formal system to a stronger acceptable system. That at any single stage we 
can view ourselves as generating proofs in some formal system does not invalidate the 
no-computer argument, for the fact remains that no single system, hence no single 
computer, can faithfully capture what we can do. Or does it? 
  

        A closer look reveals the hole in this line of thought. Our alleged edge over the computer 
that generates proofs in T consists of our knowing that T is consistent. But how do we 
know this? If I believe that my mathematical reasoning is immune to contradiction, and if 
I recognize that the formal system T represents faithfully my reasoning, then indeed I 
should accept Con(T). But T may represent my reasoning without me recognizing this 
fact. Call a formal system (theory) recognizably valid if it can be recognized as a theory 
whose theorems should be accepted, because it represents faithfully our mathematical 
reasoning (or because it derives from some such representations). Then, a recognizably 
valid T cannot capture our full mathematical reasoning; because we will reason that T is 
consistent, and this reasoning is something T cannot deliver. Yet, for all we know, there 
may be a system, call it T*, which is not recognizably valid and which in fact represent, in 
a very complicated way, all our mathematical reasoning. A computer that generates T*-
proofs simulates all our doings in mathematics, in all the systems we can create. Suppose 
we are told that a certain complicated theorem-prover, consisting of millions of 
instructions, produces exactly all that human mathematical thinking is capable of. 
Whoever believes it, will probably conclude that the algorithm is consistent (cannot 
produce a contradiction). But what grounds can we have for such a belief?   Say we 
believe it on the authority of some superior being (create, dear reader, your own favorite 
story). Or say, we believe it on the inductive force of empirical evidence: somehow we 
got this program (again, create your own scenario), which has proved all major 
mathematical theorems known to us, and whose output, as far as we checked it, contained 
no errors.  But such a belief does not derive from mathematical reasoning; hence it is not 
a counterexample to the computer’s alleged ability to simulate human mathematical 
reasoning.   

 
One should note here that the ability to form beliefs on someone’s word, or on empirical 
evidence, does not by itself constitute a principled difference between humans and 
computers. For a computer can be provided with channels through which it is 
continuously fed environmental input, which can affect its deductive processes.  It is not 
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clear to what extent the no-computer argument can be extended to this case (by using a 
suitable version of the diagonal theorem). In any case, this goes beyond the topic of 
Gödel’s incompleteness result. Our present discussion does however cover the case of a 
mathematical community, whose members exchange proofs and ideas.  For we can model 
such a community as a network of intercommunicating computational modules, a system 
that constitutes one giant computer program. The particulars of the program do not 
matter, as long as the total output is recursively enumerable, which it will be if each 
module behaves according to some algorithm. The same goes for a single human, who 
can be construed as performing several tasks in parallel; there will be several subroutines 
that form one overall program.4 None of this affects the arguments.  

 
Now in order to believe the consistency of some program on mathematical grounds, we 
have to understand how the program works, just as we understand that a certain algorithm 
performs addition, or just as we understand that Peano’s axioms are true in the model of 
natural numbers and that the inference rules preserve truth. Yet, when it comes to T* such 
understanding is beyond our capacity; the system, or the computer, is too complex for us 
to grasp as an object of mathematical thought. This is not merely a question of length or 
of our memory getting worn down, but a limit that exist in principle, since it is implied by 
Gödel’s theorem. (It is similar to upper bounds that are established in complexity theory.)    
 
Physical limitations on our performance exist, of course, in general.  Although we have a 
good grasp of the formal system of Peano’s arithmetic and recognize it as valid, certain 
deductions in it are beyond us, because of memory wear, or shortage of time. Still we 
idealize and say that, were it not for these limitations, humans could prove each theorem 
of Peano’s arithmetic.  When it comes to T*, we can say that the theorems of T* coincide 
with what is humanly provable in principle, i.e., disregarding physical limitations on 
human performance. But even under these idealized conditions, we could not, as a matter 
of principle, recognize T* as valid.  This would be a structural inherent feature, rather 
than a matter of wear and tear.  
 
 And if such is the case, then we (qua mathematicians) are machines that are unable to 
recognize the fact that they are machines. As the saying goes: if our brains could figure 
out how they work they would have been much smarter than they are. Gödel’s 
incompleteness result provides in this case solid grounds for our inability, for it shows it 
to be a mathematical necessity. The upshot is hauntingly reminiscent of Spinoza's 
conception, on which humans are predetermined creatures, who derive their sense of 
freedom from their incapacity to grasp their own nature. A human, viz. Spinoza himself, 
may recognize this general truth; but a human cannot know how this predetermination 
works, that is, the full theory. Just so, we can entertain the possibility that all our 

                                                 
4 Dennett, ibid, tries to defuse the implications of the no-computer thesis by arguing that human behavior 
may represent several Turing machines, running in parallel, such that the Gödel sentence that is unprovable 
by one is provable by another. The argument, it can now be seen, misfires.  If the total output is recursively 
enumerable, we have in principle one program. And if it is not, then it remains for the functionalist to 
explain, how mathematical reasoning, performed according to some functionalist model, produces a non-
recursively enumerable set. Dennett also argues that the same physical device can implement, according to 
different interpretations, many different programs. This is trivially true, but of no help to the functionalist, 
who is after all committed to there being a certain computational model that explains mental activity.  
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mathematical reasoning is subsumed under some computer program; but we can never 
know how this program works. For if we knew we could diagonalize and get a 
contradiction.  

 
       The discussion above brings to the fore the role of mathematical self-reflection: A 

mathematician realizes by self-reflecting on his own reasoning that his inferences can be 
formalized by such and such deductive system. From which the mathematician can go on 
to infer that the system in question is consistent. The self-reflection is therefore itself part 
of mathematical reasoning. Gödel’s result shows however that self-reflection cannot 
encompass the whole of our reasoning; namely, it cannot comprehend itself within its 
horizon. There is, indeed, prima facie plausibility to the general claim that we can only 
reflect on part of our rational apparatus; for the very act of self-reflection remains outside 
the picture it reveals. Gödel’s result lends mathematical grounds to this intuitive 
plausibility.  

 
       Finally, note how the impossibility of full grasp of our own “reasoning program” accords, 

in spirit, with Davidson’s claim that psychology must remain on a certain level of 
imprecise generalities. We may speculate how our reasoning works and we may confirm 
some general aspects of our speculation. But we cannot have a full detailed theory. The 
reason for the impossibility is the same, both in the case of mathematical reasoning and in 
the case of psychology, namely: the theoretician who constructs the theory is also the 
subject the theory is about. 

 


